Development of an Inflatable Supersonic Tension Cone Decelerator

5th International Planetary Probe Workshop

Ian G. Clark
Juan R. Cruz
Robert D. Braun

Georgia Institute of Technology
June 28, 2007

Outline

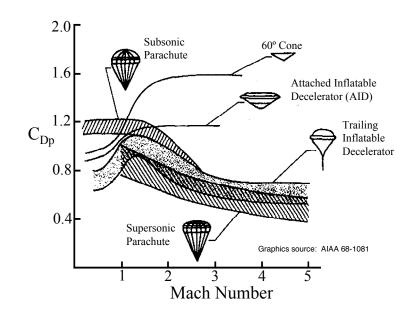
- Decelerator technology state-of-the-art
- Previous IAD development efforts
- Overview of Tension Cone
- Outline of present tension cone development

Decelerator Technology State-of-the-Art

- Current planetary missions are pushing aerodynamic decelerator technology to its limits
 - Aeroshell and parachute systems predominantly derived from Viking era design and validation
 - Mars Science Lab is likely at the edge of current capability in landed mass
- Aeroshells constrained by launch vehicle fairing
 - Presently limited to ~5m
- Parachutes constrained by size, deployment conditions, and poor performance at increasing Mach numbers (M > 3)

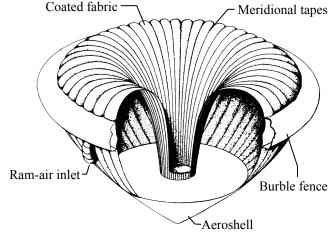
	Viking	Pathfinder	MER	Phoenix	MSL
Aeroshell Diameter (m)	3.5	2.65	2.65	2.65	4.6
Aeroshell C _D A (m ²)	15	9	9	9	27
Chute Diameter (m)	16	12.5	14	11.5	19.7
Chute C _D A, approx. (m ²)	118	81	96	69	167
Useful Landed Mass (kg)	244	92	173	167	775
Deployment Mach Number	1.05	1.71	1.82	1.60	2.00

*C_D's approximated using nominal MSL chute performance



3 28-Jun-07

Decelerator Technology State-of-the-Art


- Supersonic Inflatable Aerodynamic Decelerators (IADs) represent potential upgrade path for entry technology
 - Can act as a bridge towards hypersonic inflatable decelerators
- However, technological maturity requires advancing knowledge in multiple areas of inflatable decelerators
 - Configuration
 - Static aerodynamics
 - Aeroelastic characteristics
 - Deployment mechanics
 - Material behavior and selection
 - Manufacturing/assembly methods
 - Integration with entry vehicle
 - Fluid-structural interaction

Previous IAD Development Efforts

- Historically, variety of IAD concepts considered
 - Predominantly trailing devices, some attached
- A significant amount of work was performed to mature the AID concept during early 60's and mid 70's
 - Initial work focused on shape and structural isotensoid theory
 - Large scale (4.9m diameter) helicopter drop tests
 - Smaller scale (1.4m & 1.5m) supersonic wind tunnel tests
 - Mach 2.2 4.5, AOA 0°-10°, Dyn. Pres. > 74.5 psf
- Results of tests showed excellent correlation with basic theory used for design
 - Pressure distribution and aerodynamic coefficients matched well with modified Newtonian theory at high supersonic (M > 3) speeds
 - Experimental inflation loads and times matched with those estimated from simple isentropic flow analysis
- Design and testing approach used for AID program can serve as a blueprint for present effort

Graphics source: NASA TN D-5840

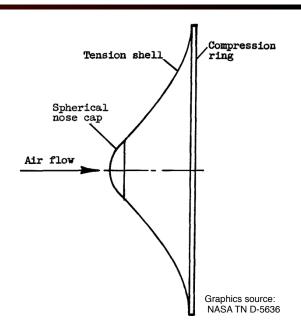
Movie still from Technical Film Supplement L-1080

5

Next Step

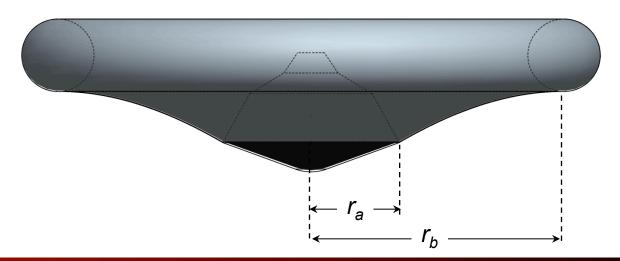
- Although the isotensoid AID configuration is well developed, alternative configurations may be more optimal
- Development effort underway for a Tension Cone IAD

Tension Cone


- More recent literature refers to it as a hypercone
- Essentially a tension shell held in place by a torus and used for supersonic (vs. hypersonic) deceleration

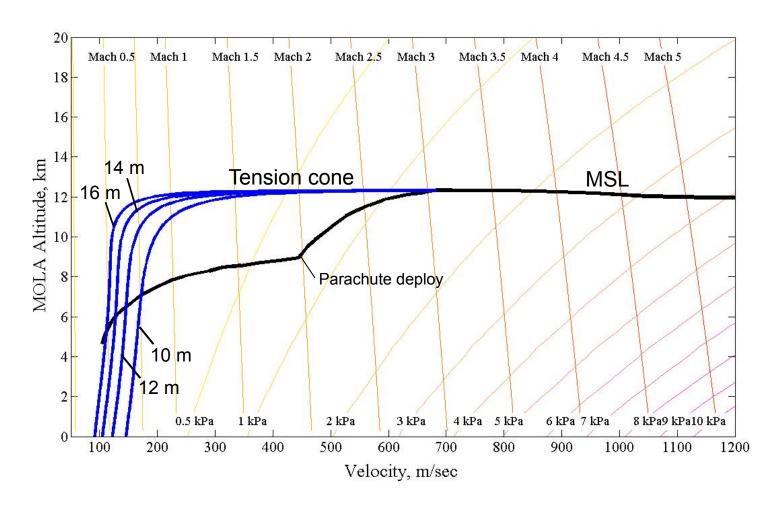
Advantages

- Reduced material surface area
- Improved drag coefficients
- Large body of work on shape and structural theory
- Direct linkage to entry decelerator configuration

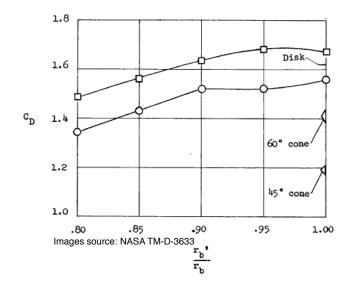

<u>Disadvantages</u>

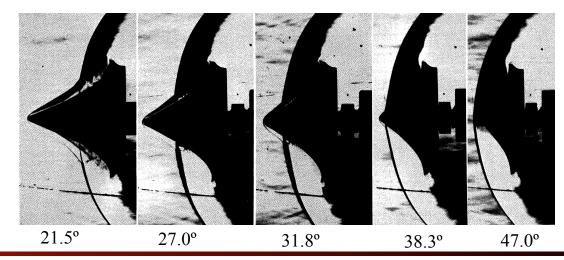
- Requires separate inflation system
- Variable meridional stresses
- Fabrication specifics still largely undeveloped
- Complex buckling behavior
- Shape and structural theory still somewhat unproven, especially at off-design conditions (α, q, etc.)

Tension Cone Theory


- Tension cone shape derived on basis of keeping entirety of thin shell under tension to resist deformation
 - Tension in shell resisted by a compression ring (inflated torus)
- Coordinates for tension shell can be determined as a function of only a few variables
 - Pressure distribution (e.g. Newtonian, uniform)
 - Drag coefficient for tension shell shape
 - Ratio of tension shell radius to forebody radius (r_b/r_a)
 - Ratio of circumferential shell stress to meridional shell stress (assumed constant)

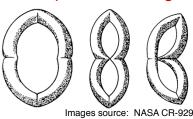
28-Jun-07


Example Application - MSL Entry



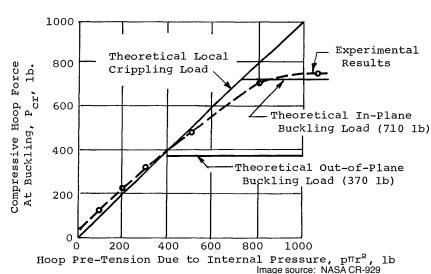
Historical Development Efforts

- Initial investigations performed in late 1960's
 - Focused on static aerodynamics of rigid tension cones
 - Examined variations in cone angles, nose bluntness, and shoulder radii
- Results generally favorable
 - Improved drag
 - Decent stability
 - Some concerns on flow stability



28-Jun-07

Compression Ring Design

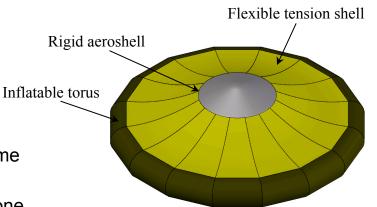

- Later work focused on structural aspects of the compression ring
 - Pressurized torus seen as favorable solution
- Structural considerations involve localized buckling of membrane wall, inplane buckling, and out-of-plane buckling
 - Buckling theory for pressurized rings developed for multiple loading conditions
- Experimental efforts aimed at validating theory focused on static testing using vacuum bag and underwater testing
 - Theory not validated under simulated flight conditions

In-plane buckling

Out-of-plane buckling

28-Jun-07

Present Efforts


 Development of Tension Cone concept part of larger Program to Advance Inflatable Decelerators for Atmospheric Entry (PAI-DAE)

Wind Tunnel Testing

- Two weeks in Glenn Supersonic 10' x 10'
- Incremental testing (three configurations)

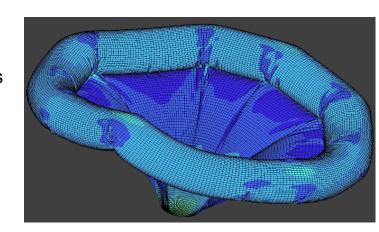
Objectives

- Establish aerodynamic database in supersonic regime
 - > Mach up to 3.5, Dyn. Pres. up to 10 kPa
- Explore aeroelastic behavior on a flexible tension cone
- Explore inflation and deployment mechanics on an inflatable structure
- Validate tension cone structural and shape theory
- Acquire data useful for validating fluid-structure interaction codes

Future work and conclusions

Fluid Structure Interaction Analysis

- Coupling of high fidelity CFD and structural analysis codes
- Provides capability to analyze and predict behavior of flexible aerodynamic decelerators
- For the most part unvalidated



- Ballistic range dynamic stability evaluation
- Small (3-5 m) and large scale (15 m) high altitude balloon drop testing
- Sub-orbital sounding rocket tests

Conclusions

- IAD maturation required for future planetary exploration
- Tension cone development program represents logical step in IAD evolution
 - Clear upgrade path to atmospheric testing and hypersonic configuration

12

